hem {HEM}R Documentation

Heterogeneous Error Model (HEM) for Microarray Data

Description

Fits an error model with heterogeneous experimental and biological variances.

Usage

hem(dat, tr=" ", n.layer, design, burn.ins=1000, n.samples=3000,
    method.var.e="gam", method.var.b="gam", method.var.t="gam",           
    var.e=NULL, var.b=NULL, var.t=NULL, var.g=1, var.c=1, var.r=1,
    alpha.e=3, beta.e=.1, alpha.b=3, beta.b=.1, alpha.t=3, beta.t=.2,
    n.digits=10, print.message.on.screen=TRUE)

Arguments

dat data
tr if "log2", "log10", or "loge", then log-transformation (with base 2, 10, or e respectively) is taken.
n.layer number of layers; 1=one-layer EM, 2=two-layer EM
design design matrix
burn.ins number of burn-ins for MCMC
n.samples number of samples for MCMC
method.var.e prior specification method for experimental variance; "gam"=Gamma(alpha,beta), "peb"=parametric EB prior specification, "neb"=nonparametric EB prior specification
method.var.b prior specification method for biological variance; "gam"=Gamma(alpha,beta), "peb"=parametric EB prior specification
method.var.t prior specification method for total variance; "gam"=Gamma(alpha,beta), "peb"=parametric EB prior specification, "neb"=nonparametric EB prior specification
var.e prior estimate matrix for experimental variance
var.b prior estimate matrix for biological variance
var.t prior estimate matrix for total variance
var.g N(0, var.g); prior parameter for gene effect
var.c N(0, var.c); prior parameter for condition effect
var.r N(0, var.r); prior parameter for interaction effect of gene and condition
alpha.e, beta.e Gamma(alpha.e,alpha.e); prior parameters for inverse of experimental variance
alpha.b, beta.b Gamma(alpha.b,alpha.b); prior parameters for inverse of biological variance
alpha.t, beta.t Gamma(alpha.b,alpha.b); prior parameters for inverse of total variance
n.digits number of digits
print.message.on.screen if TRUE, process status is shown on screen.

Value

n.gene numer of genes
n.chip number of chips
n.cond number of conditions
design design matrix
burn.ins number of burn-ins for MCMC
n.samples number of samples for MCMC
priors prior parameters
m.mu estimated mean expression intensity for each gene under each condition
m.x estimated unobserved expression intensity for each combination of genes, conditions, and individuals (n.layer=2)
m.var.b estimated biological variances (n.layer=2)
m.var.e estimated experiemental variances (n.layer=2)
m.var.t estimated total variances (n.layer=1)
H H-scores

Author(s)

HyungJun Cho, PhD, and Jae K. Lee, PhD,
Division of Biostatistics and Epidemiology
Department of Health Evaluation Sciences
University of Virginia School of Medicine
(hcho@virginia.edu; jaeklee@virginia.edu)

References

Cho, H. and Lee, J.K. (2004) Bayesian Hierarchical Error Model for Analysis of Gene Expression Data, Bioinformatics, 20: 2016-2025.

See Also

hem.eb.prior, hem.fdr

Examples


#Example 1: Two-layer HEM

data(pbrain)

##construct a design matrix
cond <- c(1,1,1,1,1,1,2,2,2,2,2,2) #condition
ind  <- c(1,1,2,2,3,3,1,1,2,2,3,3) #biological replicate
rep  <- c(1,2,1,2,1,2,1,2,1,2,1,2) #experimental replicate
design <- data.frame(cond,ind,rep)

##normalization
pbrain.nor <- hem.preproc(pbrain[,2:13])

##fit HEM with two layers of error
##using the small numbers of burn-ins and MCMC samples for a testing purpose;
##but increase the numbers for a practical purpose 
pbrain.hem <- hem(pbrain.nor, n.layer=2, design=design, 
                  burn.ins=10, n.samples=30)

##print H-scores
pbrain.hem$H 

#Example 2: One-layer HEM

data(mubcp)

##construct a design matrix
cond <- c(rep(1,6),rep(2,5),rep(3,5),rep(4,5),rep(5,5))
ind  <- c(1:6,rep((1:5),4))
design <- data.frame(cond,ind)

##construct a design matrix
mubcp.nor <- hem.preproc(mubcp)

#fit HEM with one layers of error
#using the small numbers of burn-ins and MCMC samples for a testing purpose;
#but increase the numbers for a practical purpose 
mubcp.hem <- hem(mubcp.nor, n.layer=1,design=design, 
             burn.ins=10, n.samples=30)

##print H-scores
mubcp.hem$H

###NOTE: 
###see help(hem.eb.prior) for examples 
###    with Empirical Bayes (EB) prior sepecification
###see help(hem.fdr)  for examples with FDR evaluation



[Package HEM version 1.0.4 Index]